New electrical potential method for measuring crack growth in nonconductive materials
نویسندگان
چکیده
DC electric potential technique has been used to monitor crack growth in conductive materials. A constant DC current is passed through these materials and the crack length is measured through the changes in the electrical voltage at the crack mouth. However, this method is not applicable in crack growth measurement in nonconductive materials or adhesively bonded joints. For these materials, a new method is developed and is shown to provide a very accurate method for measuring the crack length. The surface of these materials is coated with a thin layer of carbon paint and the crack length is measured through the changes in the electrical resistance of the carbon paint, as the crack grows both in the base material and the thin layer carbon paint. In contrast to the DC electric potential technique where the position of the probes for measuring the crack length is very important for an accurate measurement of the crack length, the new technique is little sensitive to the probe location. Crack growth is measured in adhesively bonded joints subjected to creep loadings. A modified compact tension specimen is cut in two pieces across its notch area. The pieces are then glued using an adhesive. The surface of the specimen is painted with a thin layer of carbon paint and the changes in its electrical resistance are monitored. It is shown that the carbon paint method provides a quiet sensitive method for monitoring the crack growth. The creep crack growth rate in the adhesively bonded joint is related to Mode I energy release rate, G1. It is shown that the crack grows in the middle of the adhesive layer rather than at the interface of the joint. Micro-mechanisms of the crack growth are studied using a scanning electron microscope. The damage consists of numerous crazed regions at the crack tip. Crack grows by the linkage of the crazed region. 2004 Elsevier Ltd. All rights reserved.
منابع مشابه
The Dc Electrical Potential Method for the Measumment of Fretting Cracks
As fretting fatigue cracks are initiated at an early stage of life, the fretting fracture process is dominated by the stable growth of cracks. Hence the measurement of crack length is very important. This paper demonstrates the suitability of the DC potential drop technique for the measurement of fretting cracks. A calibration has been established for monitoring crack growth in BS L65 copper al...
متن کاملCracking Elements Method for Simulating Complex Crack Growth
The cracking elements method (CEM) is a novel numerical approach for simulating fracture of quasi-brittle materials. This method is built in the framework of conventional finite element method (FEM) based on standard Galerkin approximation, which models the cracks with disconnected cracking segments. The orientation of propagating cracks is determined by local criteria and no explicit or implic...
متن کاملOn the crack face boundary conditions in electromechanical fracture and an experimental protocol for determining energy release rates
The fracture mechanics of electromechanical materials has been investigated for well over a decade, yet there still exists controversy over the appropriate crack face boundary conditions for non-conducting cracks. In this paper an experimental protocol for measuring the energy release rate in a non-linear reversible electromechanical body is proposed and summarized. The potential results from t...
متن کاملOn Global Energy Release Rate of a Permeable Crack in a Piezoelectric Ceramic
A permeable crack model is proposed to analyze crack growth in a piezoelectric ceramic. In this model, a permeable crack is modeled as a vanishing thin, finite dimension, rectangular slit with dielectric medium inside. A first-order approximation solution is derived in terms of the slit height, h0 . The main contribution of this paper is that the newly proposed permeable crack model reveals tha...
متن کاملPropagation of Crack in Linear Elastic Materials with Considering Crack Path Correction Factor
Modeling of crack propagation by a finite element method under mixed mode conditions is of prime importance in the fracture mechanics. This article describes an application of finite element method to the analysis of mixed mode crack growth in linear elastic fracture mechanics. Crack - growth process is simulated by an incremental crack-extension analysis based on the maximum principal stress c...
متن کامل